Archives pour l'étiquette IRM

La résonance

Le phénomène de résonance est présent dans de nombreux domaines de la physique et est utilisé dans de très nombreuses applications, de la balançoire aux accélérateurs de particules. Parfois embêtant, il peut aussi s’avérer fort utile, voire indispensable.

Un peu d’étymologie pour commencer. On a tendance à associer la résonance au domaine de l’acoustique dans le langage courant signifiant « prolongation de la durée d’un son » depuis le 14ème siècle mais cette définition n’est plus d’actualité puisque la résonance peut s’étendre à tous les phénomènes ondulatoires dans lesquels une onde peut se propager et induire une vibration. En dehors des ondes acoustiques, on peut citer les ondes sur cordes vibrantes, les ondes sismiques, les vagues ou encore les ondes électromagnétiques comme la lumière ou la radio.

Si on s’intéresse aux ondes mécaniques, toute structure possède des fréquences propres, c’est-à-dire des fréquences auxquelles une structure mécanique peut vibrer si on excite cette fréquence particulière. Le meilleur exemple est sans doute la balançoire : en tendant les jambes à un moment bien précis, on donne une impulsion de manière répétée à intervalle régulier (à une fréquence constante), induisant une oscillation. Dans le cas de la balançoire, les équations de la mécanique nous permettent de calculer précisément la fréquence de résonnance (ou d’un pendule simple), qui est fonction de l’amplitude du mouvement.

Les résonances néfastes

Toutes les constructions, comme les ponts, possèdent donc une fréquence propre qui peut être amplifiée si on l’excite suffisamment, c’est-à-dire si on applique une force suffisante dans la bonne direction et à la bonne fréquence, avec des rafales de vents périodiques par exemple ou des soldats qui marchent au pas. Un pont peut ainsi entrer en résonance, provoquant de fortes oscillations jusqu’à son effondrement ! On peut mentionner le cas du pont suspendu de la Basse-Chaîne sur la Maine à Angers qui s’effondra en 1850 suite au passage de militaires marchant au pas (les 226 soldats perdirent la vie). Cependant, l’origine exacte de l’effondrement du pont de la Basse-Chaîne fait toujours débat car une tempête sévissait ce jour-là et le règlement militaire exigeait déjà à cette époque de ne pas marcher au pas sur les ponts…

La rupture du pont de la Basse-Chaîne à Angers en 1850.

On mentionne aussi souvent l’histoire du pont de Tacoma (USA) en 1940 qui serait entré également en résonance suite à des rafales de vent. Cependant, plusieurs études scientifiques ont montré que ce pont ne s’est pas écroulé à cause du phénomène de résonance mais à cause d’une instabilité aéroélastique de torsion engendrée par le vent, voir la vidéo impressionnante de cette catastrophe (le pont a oscillé pendant plus d’une heure avant de s’effondrer) : https://www.youtube.com/watch?v=Rmfl2kFeNPM

En automobile également, nombreuses sont les résonances qui peuvent nous agacer. Vous roulez sur l’autoroute à faible vitesse et tout va bien… Vous décidez alors d’accélérer et là, tout à coup, un bourdonnement survient et persiste, vous accélérez encore et le bruit disparait : vous venez de faire entrer en résonance une partie de votre voiture (carrosserie, pneumatique, etc.), liée à la fréquence de rotation du moteur ou des roues, qui est proportionnelle à la vitesse du véhicule. Pour cette raison les pneumatiques sont désormais équipés de motifs non périodiques (i.e. qui ne se répètent pas parfaitement) pour éviter tout phénomène de résonance au niveau des pneus. Les amortisseurs des automobiles sont également conçus pour avoir des fréquences de résonance qui ont le moins d’impact possible sur le corps humain, moyennant sinon une gêne importante, voire un mal des transports. Comme le mentionne A. Létévé dans sa thèse, « Il s’avère que la plage de fréquence de 0 à 20 Hz dans laquelle le corps humain est extrêmement sensible aux vibrations verticales correspond à la plage de fonctionnement de la suspension ». Il y a clairement des fréquences à éviter pour le corps humain, comme entre 4 Hz et 11 Hz qui entrainent des douleurs similaires à celle d’un infarctus (le cœur a une fréquence de résonance de 7 Hz).

Décomposition du corps humain en systèmes masses ressorts amortisseurs avec les fréquences de résonance de chaque partie. Extrait de la thèse de Aurore Létévé (2014).

Les résonances vertueuses

En musique

La première résonance à laquelle on pense est bien entendu en musique. En effet, les instruments à cordes et à vent ainsi que les percussions exploitent le phénomène de résonance pour former des notes bien précises et pouvoir ainsi jouer un morceau de musique. Sans résonance, pas de musique…

Les instruments à cordes possèdent plusieurs fréquences de résonance qui dépendent de la longueur, de la masse et de la tension de chaque corde. C’est pour cette raison qu’on accorde la plupart de ces instruments en réglant la tension de chaque corde pour obtenir la résonance à la fréquence/note voulue (la masse et la longueur étant constantes). Cette résonance se produit sur l’onde mécanique qui se propage le long de la corde lorsque cette dernière est excitée par une impulsion qui en théorie contient toutes les fréquences. La corde produit alors un son contenant uniquement les fréquences de résonance de la corde (appelées fréquences propres) car toutes les autres fréquences sont rapidement atténuées et disparaissent sans pouvoir être entendues et amplifiées par le corps de l’instrument. L’impulsion initiale est générée par le musicien soit par un pincement (guitare, harpe…), soit par un coup (piano, clavecin…), soit par un frottement avec un archer (violon, violoncelle…). Pour information, la physique des cordes vibrantes est modélisée une équation aux dérivées partielles qui fut resolue par d’Alembert en 1747 et qui s’étudie généralement dans les classes préparatoires scientifiques.

L’équation des ondes qui modélise la propagation d’une onde dans un milieu continu et infini.

En imagerie médicale

Le phénomène de résonance est la clef de voute d’une technique d’imagerie médicale que vous connaissez : l’IRM (Imagerie par Résonance Magnétique). Ici, la résonance n’est pas mécanique comme dans le cas de la balançoire ou des ponts mais magnétique. Un champ magnétique constant est appliqué sur le patient ainsi qu’un champ oscillant pour exciter les spins des atomes du corps humain (propriété quantique des atomes) et les faire entrer en résonance pour les détecter et fabriquer une image, c’est ce qu’on appelle la résonance magnétique nucléaire, voir mon article précédent de la RMN à l’IRM.

En physique des hautes énergies

Une autre application moins connue du grand public est l’accélération des particules à hautes énergies avec des cavités radiofréquences (RF). Pour accélérer des particules chargées, on utilise un champ électrique (les particules positives/négatives sont accélérées par une tension électrique opposée à leur charge). On peut alors utiliser le phénomène de résonance pour améliorer cette accélération en donnant une petite impulsion aux particules à une fréquence précise. Pour induire cette résonance, une onde électromagnétique est envoyée dans une cavité ayant une forme bien particulière permettant la résonance des ondes à la fréquence propre de la cavité, de l’ordre de la centaine de MHz, c’est-à-dire dans la gamme des fréquences radio (d’où le nom de cavités RF). Les cavités sont agencées en série pour accélérer les particules en ligne droite et le champ électrique est alors inversé quand les particules passent au centre d’une cavité de telle manière à ce que les particules « voient » toujours une tension opposée à leur charge pour être accélérées de proche en proche continuellement. Je vous conseille de voir cette petite vidéo du CERN (Organisation Européenne pour la Recherche Nucléaire) sur le fonctionnement des cavités RF du LHC qui illustre bien le phénomène:  https://videos.cern.ch/record/1750705

Un des modules DTL du Linac 4 en train d’être assemblé au CERN (Image: Maximilien Brice/CERN). On peut voir les cavités RF au centre du module entre lesquelles les particules sont accélérées.

De la RMN à l’IRM

Tout le monde connait maintenant l’Imagerie par Résonance Magnétique (IRM) qui est devenue un examen presque classique en imagerie médicale lorsqu’on a besoin d’images précises de la moelle épinière ou du cerveau mais aussi pour toutes les articulations, muscles, cellules cancéreuses ou toutes zones irriguées par le sang.

La France est cependant sous-équipée avec seulement 684 IRM au total sur son territoire, soit environ 10 IRM par million d’habitants, contre une moyenne de 20 en Europe, ce qui explique une attente moyenne de 37,7 jours en France pour réaliser cet examen parfois indispensable pour rendre un diagnostic à des patients souffrants en attente d’un traitement adéquat (source). La France fait donc figure de mauvaise élève en la matière. Certes, un IRM coûte cher, dans les 2 millions d’euros, mais la demande n’est pas satisfaite comme il se devrait.

IRM_photoJe vais essayer de vous expliquer ici comment fonctionne un IRM et pourquoi cette technique est si révolutionnaire, ne présentant quasiment que des avantages.

La Résonance Magnétique Nucléaire

L’IRM est basée sur un phénomène physique appelé la Résonnance Magnétique Nucléaire (RMN) découvert en 1938 par Isidor Isaac Rabi, un des pères fondateurs du CERN à Genève (Organisation Européenne pour la Recherche Nucléaire) et qui obtiendra d’ailleurs le prix Nobel pour cette découverte en 1944. On dénombrera d’ailleurs pas moins de 5 prix Nobel ayant un rapport avec la RMN et l’IRM entre 1944 et 2003.

La RMN tire son explication du fait que les noyaux des atomes (les protons et les neutrons) possèdent une sorte de « petit aimant » interne que les physiciens appellent « spin ». On peut donc dire qu’un atome possède aussi un spin en ajoutant tous les spins de chaque particule qui le compose. A noter que si 2 petits aimants sont inverses l’un de l’autre, alors ils s’annulent et le spin résultant est ainsi nul.

Si on applique un champ magnétique à ces « petits aimants », ils vont alors se mettre à tourner sur eux même en décrivant un cône, un peu à la manière d’une toupie, c’est le phénomène de la précession de Larmor.

 IMR_Larmor

Un atome de spin non nul assure un mouvement de précession de Larmor autour d’un champ magnétique constant (B0)

Ainsi, tous les atomes ayant un nombre de protons et de neutrons pair come l’oxygène (4 protons + 4 neutrons) et le carbone (8 protons + 8 neutrons) ont un spin nul et ne sont donc pas soumis au phénomène de RMN. En revanche, tous les atomes ayant un nombre de protons et de neutrons impair sont soumis à ce phénomène de résonance magnétique tel l’hydrogène (1 seul proton). L’hydrogène est intéressant en RMN car il très bien connu des scientifiques et il est présent en grande quantité dans le corps humain dans les molécules d’eau (H2O).

Comment fabriquer une image ?

Pour fabriquer une image en 3 dimensions, on va mettre l’échantillon qui nous intéresse (un homme par exemple) dans un puissant champ magnétique constant. Tous les atomes de spins non nuls vont alors tourner comme des toupies dans la même direction. On va alors ajouter dans une autre direction de l’espace un champ magnétique oscillant au champ magnétique constant de manière à exciter certains atomes qui vont osciller à leur tour à une fréquence bien particulière et quand on va arrêter ce champ oscillant, les atomes vont regagner progressivement leur position initiale dans le champ magnétique constant, c’est ce qu’on appelle la relaxation. Chaque atome oscille à une fréquence bien précise en fonction du champ magnétique, par exemple, l’hydrogène oscille à une fréquence de 42 MHz pour un champ magnétique de 1 Tesla. Lorsque ce phénomène apparait et disparait, on peut mesurer avec une antenne réceptrice ces atomes comme l’hydrogène qui ont changé de direction sous l’influence de ce champ magnétique oscillant. On répète l’opération dans les 3 dimensions et à plusieurs fréquences connues si on s’intéresse à plusieurs composés chimiques et on peut alors mesurer la répartition de chaque ensemble d’atomes dans l’espace.

IRM_craneUne fois toutes ces mesures faites, il faut alors reconstituer une image en 3 dimensions. Cette question a pu être résolue récemment dans les années 70 grâce aux importants progrès en traitement du signal et grâce aux progrès de l’informatique sans lesquels l’IRM serait impossible car cette technique nécessite une grande quantité d’information et de calcul pour reconstituer une image.

L’IRM : la machine

En gros, un IRM, c’est:

  • Un gros aimant pour faire un champ magnétique permanent et homogène, c’est le gros tube dans lequel on rentre et qui fait environ 60 cm de diamètre.
  • Trois bobines de gradient dans les 3 directions de l’espace pour créer les champs magnétiques oscillants. Elles sont généralement réparties autour du tunnel de l’aimant.
  • Des antennes radiofréquences pour mesurer le signal de précession des atomes qui résonnent. Généralement placées autour de la tête ou de toute autre zone à observer.
  • Un super PC qui fait tourner un algorithme informatique pour décrypter toutes les mesures des antennes et reconstituer l’image.

La pièce centrale de l’IRM est véritablement l’aimant principal car plus le champ magnétique est intense, meilleur sera la résolution de l’image à la fin. C’est pour cette raison qu’aujourd’hui la plupart des IRM utilisent des aimants supraconducteurs (voir ce billet sur la supraconductivité) permettant d’atteindre des champs magnétiques jusqu’à 7 Teslas dans les IRM, soit plus de 100 000 fois le champ magnétique terrestre qui nous indique le nord ! Grâce à ces champs extrêmement puissants on obtient des images précises au millimètre avec un très bon contraste. Le CEA est même en train de construire un IRM à 11,5 Tesla pour une ouverture de 90cm (Iseult) dans le cadre du projet Neurospin à Saclay.

 IRM_IseultCoupe de laimant Iseult de 11,5 T pour le projet Neurospin. En orange : les bobines supraconductrices. En bleu : lenceinte hélium et la structure mécanique © CEA.

Evidemment, le coût de ces aimants est important et en plus, ils doivent fonctionner à une température cryogénique proche du zéro absolu. En effet, les aimants supraconducteurs IRM sont généralement refroidis à 4,5 K, soit -266 degrés à l’aide d’hélium liquide et demande donc une infrastructure assez importante pour fonctionner avec un coût associé non négligeable.

Est-ce dangereux ?

Certains détracteurs tentent de montrer que l’exposition à des champs magnétiques de manière répétée peut entrainer des troubles de santé mais rien n’a jamais été prouvé jusqu’à présent et il est clair que le fait de réaliser quelques IRM dans l’année (une séance dure environ 30 minutes) est inoffensif pour la santé. L’IRM conventionnel n’utilise pas de traceur et il n’y a aucune radiation liée à cette technique (cependant on trouve parfois le couplage de l’IRM avec un agent de contraste radioactif pour améliorer certain diagnostic).

C’est d’ailleurs un des principaux atouts de l’IRM contrairement aux angiographies ou aux scanners qui utilisent des rayons X provoquant l’irradiation des patients de manière significative. A titre de comparaison, un patient réalisant un scanner de l’abdomen  reçoit d’un coup une dose de radiation de 10 millisievert, soit la moitié du seuil maximal accepté pour un travailleur français dans le nucléaire en une année complète alors que pour une IRM classique, c’est zéro !

Il y a cependant des contre-indications pour passer une IRM comme :

  • La présence d’objets métalliques dans le corps : bah oui, imaginez ce que va faire un morceau de métal dans un champ magnétique intense… Je ne parle même pas d’un patient ayant un pacemaker qui n’a pas le droit d’approcher un IRM à moins de 15 mètres.
  • La claustrophobie : le tunnel fait dans les 60cm de diamètre, on est attaché sur une table mobile et ça fait un boucan d’enfer…
  • L’obésité et les femmes enceintes (toujours le problème de l’étroitesse du tunnel).

 L’IRM fonctionnelle : une révolution

Une autre révolution est l’IRM dite fonctionnelle, ou encore IRMf. Cette technique se base sur le fait que la désoxyhémoglobine (les globules rouges dans le sang auxquelles les atomes d’oxygène ont été absorbés par le métabolisme du corps) est sensible au phénomène de RMN. On peut alors exciter la fréquence de ces molécules par RMN et ainsi avoir un indice sur l’afflux de sang oxygéné qui chasse le sang désoxygéné. Ce signal appelé « signal BOLD » peut s’acquérir en IRM en environ une seconde seulement.

On peut alors enregistrer ce « signal BOLD » en temps réel sur un patient dans une IRM comme un film et suivre en direct l’oxygénation du cerveau lors d’exercices cognitifs qui mettent en avant quelles zones du cerveau sont actives. Cette technique a été révolutionnaire car elle permet une résolution spatiale de l’ordre du millimètre  et une résolution temporelle de l’ordre de la seconde sans aucune contrainte de répétitivité comme l’IRM est non invasive et ne génère pas de radiation. irmf1-grdImage obtenue par IRMf illustrant la dissociation dans le cortex orbitofrontal entre récompenses primaires (image érotique) et secondaire (gain d’argent). © CNRS.

Ces avantages ont permis de très grandes avancés pour la recherche en psychologie cognitive et comportementale ainsi qu’en psychiatrie dans les 10 dernières années. L’IRMf a détrôné la TEP (Tomographie par Emission de Positrons) qui était jusqu’alors utilisée pour faire des études du cerveau mais avec une résolution de plus de 250 mm3 et une résolution temporelle de 2 minutes tout en étant invasif et générant des radiations.